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A B S T R A C T   

Aging has been recognized as a major driving force of the Alzheimer’s disease’s (AD) progression, however, the 
relationship between brain aging and AD is still unclear. There is also a lack of studies investigating the influence 
of AD risk factors on brain aging in cognitively normal people. Here, the “Brain Age Gap Estimation” (BrainAGE) 
framework was applied to investigate the effects of AD risk factors on individual brain aging. Across a total of 
165 cognitively normal elderly subjects, although no significant difference was observed in the BrainAGE scores 
among the three groups, AD risk dose (i.e., the number of AD risk factors) is tend to associated with an increased 
BrainAGE scores (high-risk > middle risk > low risk). Female exhibited more advanced brain aging (P = 0.004), 
and higher education years were associated with preserved brain aging (P < 0.001). APOE-ε4 (P = 0.846) and 
family history (FH) of dementia (P = 0.209) did not increase BrainAGE scores. When comparing 52 aMCI patients 
with 38 cognitively normal controls from ADNI dataset, aMCI patients showed significantly increased BrainAGE 
scores. BrainAGE scores were negatively correlated with CSF Aβ42 levels in the aMCI group (r = − 0.275, P =
0.048). With an accuracy of 68.9%, BrainAGE outperformed APOE-ε4 and hippocampus gray matter volume 
(GMV) in predicting aMCI. In conclusion, AD is independently associated with structural changes in the brain 
that reflect advanced aging. Potentially, BrainAGE combined with APOE-ε4 and hippocampus GMV could be used 
as a pre-screening tool in early-stage AD.   

1. Introduction 

Alzheimer’s disease (AD), the most common cause of dementia is 
emerging as a global epidemic. The global prevalence of AD is expected 
to double every 20 years. It is primarily a disease of the elderly and the 
incidence rate increases with age. A large number of risk factors are 
associated with an increased risk of developing AD. Unfortunately, to 
date, neither a cure nor a treatment is optional to alter its progression 
[1]. The main neuropathological features of AD are widely described as 
the extracellular accumulation of 42-amino-acid amyloid-beta (Aβ) 
plaques and tau intracellular inclusions generating neurofibrillary tan-
gles which causes severe cognitive impairment [2,3]. Various patho-
logical changes develop years or decades before the onset of cognitive 

decline [4]. As well, abnormal brain structural changes already occur in 
amnestic mild cognitive impairment (aMCI). Over the past several years, 
there has been great progress in the development of biomarkers for 
detecting underlying AD [5]. 

Aging is associated with a higher risk of various diseases throughout 
the body, however, each individual ages at a different rate, biologically 
[6,7]. The Geroscience hypothesis states that aging is the result of the 
degeneration of multiple organ systems and this degeneration is the root 
cause of age-related diseases. In terms of brain degeneration, accelerated 
aging and the ensuing cognitive decline have a huge impact on disability 
and loss of independence in older adults. Consistent with the Ger-
oscience hypothesis, recently, it has been found that the areas of brain 
atrophy detectable in patients with AD are largely similar to the areas of 
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normal age-related atrophy shown in healthy control subjects [8,9]. 
Davatzikos et al. supported that pathologic atrophy in AD is an accel-
erated aging process [10]. Cognitive decline was recently found to 
progressively accelerate, years before being diagnosed with AD, and to 
be correlated with the atrophy rates in specified brain regions. To 
quantify this age-related pathological structural change in the brain, 
“brain-age” has been proposed to measure the rate of brain aging. This 
technique was introduced as a powerful biomarker that can be used to 
estimate an individual’s neuroanatomical age. 

Brain age gap estimation (BrainAGE) refers to the difference between 
the predicted age obtained by an age prediction model based on brain 
imaging data and the chronological age of subjects [11]. A positive brain 
prediction age difference score indicates that an individual’s brain is 
predicted to be “older” than his actual age, which reflects the acceler-
ated aging state of the brain to some extent [12]. BrainAGE is sensitive to 
a variety of neurological and psychiatric diseases, such as AD, multiple 
sclerosis and schizophrenia etc. [13,14]. Initial studies suggest that 
people with AD have advanced BrainAGE scores. Furthermore, this ac-
cess may be able to predict cognitive decline and conversion to AD in 
older adults. Even more meaningful, BrainAGE was superior to all 
cognitive scales and CSF biomarkers in predicting the transition from 
MCI to AD [15]. Elliottin et al. proved that in a longitudinal birth cohort, 
BrainAGE in midlife is also associated with cognitive decline. From a 
systems-integrity perspective, the link between BrainAGE and cognitive 
function exists from childhood [16]. A number of different biological 
processes cause the variations in brain age. For example, distinct genetic 
influence, smoking and environmental will all likely contribute to 
accelerate the brain aging [17]. However, the study of brain age is still in 
its infancy. Most of the existing studies have focused on patients with 
cognitive impairment, but few have studied the individual differences of 
BrainAGE in cognitively normal elderly. In addition, attempts to use 
BrainAGE to predict cognitive impairment are still being explored. 

Our study will further explore the relationship between AD and brain 
aging, that is, AD is the result of accelerated pathological brain aging by 
extending this research to the point before cognitive decline. Specif-
ically, we tested the following hypotheses: (1) To explore the relation-
ship between AD and brain aging, people with normal cognition were 
divided into low risk, middle risk and high risk group according to the 
risk factors of AD, we assumed that with the increase of risk level, the 
BrainAGE scores would be higher. (2) We ulteriorly explored the effects 
of AD risk factors (i.e., APOE-ε4, family history [FH] of AD), sex and 
education on brain aging in cognitively normal subjects. (3) We finally 
explored the potential value of BrainAGE for identification of patients 
with aMCI. 

2. Materials and methods 

2.1. Datasets 

Nanjing Aging and Dementia Study (NADS) Dataset: A total of 165 
cognitively normal elderly subjects were recruited through a normal 
community health screening and newspaper advertisements, and they 
underwent a standardized clinical interview, neuropsychological bat-
tery assessment, APOE genotyping and multi-modal brain MRI exami-
nation. General cognition was assessed using the mini-mental state 
examination (MMSE) and mattis dementia rating scale-2 (MDRS-2). 
Neuropsychological battery consisted of the auditory verbal learning 
test with a 20 min delayed recall (AVLT-DR), the logical memory test 
with a 20 min delayed recall, the Rey-Osterrieth complex figure test with 
a 20 min delayed recall, the clock drawing test, the digital symbol 
substitution test, trail-making test A and B, the stroop color-word test A, 
B and C, the verbal fluency test, the digital span test and the semantic 
similarity test. We further grouped the neuropsychological tests into 4 
cognitive domains (i.e., episodic memory, visuospatial function, infor-
mation processing speed and executive function) and transformed the 
raw scores into 4 composite z scores. The details about composite score 

analysis, APOE genotyping and MRI data acquisition were described in 
our previous studies and Supplemental Materials. The cognitively normal 
subjects were required to have an MMSE score ≥ 26, MDRS-2 score >
120, and AVLT-DR score > 4 for subjects with 8 or more years of edu-
cation. Participants were excluded from this study if they had a history 
of neurological or psychiatric illness, major medical illness, severe visual 
or hearing loss or gross structural abnormalities revealed by MRI im-
ages. The Research Ethics Committee of Affiliated Zhongda Hospital and 
Southeast University approved the study, and each subject provide a 
written informed consent. Finally, in this present study, cognitively 
normal elderly subjects were grouped according the FH of dementia and 
APOE allele status (i.e., high risk: both FH and APOE-ε4; middle risk: 
either FH or APOE-ε4; low risk: neither FH nor APOE-ε4). 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) Dataset: An inde-
pendent sample including 52 amnesia-MCI (aMCI) patients and 38 
cognitively normal controls was selected from the ADNI dataset (www. 
loni.ucla.edu/ADNI). All these participants received MMSE and Alz-
heimer’s Disease Assessment Scale 13-item cognitive subscale (ADAS13) 
evaluations, CSF Aβ 42 and t-tau measurements, APOE genotyping, and 
multi-modal brain MRI scans. Subject descriptions and MRI acquisition 
protocol were provided in detail in the Supplemental Materials. 

2.2. T1-Weighted MRI preprocessing 

For each participant, a grey-matter (GM) volume map in the Mon-
treal Neurological Institute (MNI) space was generated using the VBM8 
toolbox (http://dbm.neuro.uni-jena.de/vbm/) in SPM8 (http://www.fil 
.ion.ucl.ac.uk/spm/). In this process, all images were spatially normal-
ized using combinations of affine linear transform and nonlinear regis-
tration to the standard MNI template and segmented into GM, white- 
matter, and cerebrospinal fluid. Segmented GM images were modu-
lated to compensate the volumetric effects of expansion or shrinking 
employed in spatial normalization by multiplying the voxel intensity 
with the Jacobian determinants reflecting the parameters for fitting a 
voxel in native space to corresponding voxel in template space. The 
modulated images were then smoothed with a 10-mm full width half 
maximum isotropic Gaussian kernel and resampled to 3 mm isotropic 
voxels. These procedures created a whole-brain voxel-based GMV map 
for each participant. Then, we calculated the average GMV of each re-
gion in the Automated Anatomical Labelling atlas, which includes 90 
prior cortical and subcortical regions in total. These 90 regional average 
GMV values were used as a feature vector to perform the following 
prediction analyses. 

2.3. Brain age prediction using multivariate relevance regression (RVR) 
analysis 

RVR is performed capturing the multidimensional aging patterns 
throughout the whole-brain and thus modeling structural brain aging. In 
order to generate the brain age model, the brain structural features (i.e., 
whole-brain GMV) were used to build an RVR model with the chrono-
logical ages as dependent variables. To quantify prediction accuracy, we 
applied leave-one-out cross-validation (LOOCV) to estimate the out-of- 
sample generalizability of the models. The correlation coefficient r 
and mean absolute error (MAE) between the estimated and chronolog-
ical ages were used to quantify the prediction accuracy. Permutation 
tests were then used to determine whether the coefficient r and MAE 
were significantly better than the results expected by chance. The P 
values of the mean correlation r and mean MAE were calculated by 
dividing the number of permutations that showed a higher value than 
the actual value for the real sample by the total number of permutations 
(i.e., 1000). Details about the RVR model generation were described in 
Supplemental Materials. Accordingly, individual’s BrainAGE score is 
defined as the difference between predicted brain age and chronological 
age. A negative BrainAGE reflects preserved brain health in the face of 
aging; conversely, a positive BrainAGE reflects decrements in brain 
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health in the face of aging. 

2.4. Validation 

In order to validate the brain age model, a 10-fold cross-validation 
(see Supplementary Materials) was applied to validate our prediction 
results. Furthermore, we made another validation analysis with using 
the whole-brain normalized GMV (i.e., raw regional/total intra-cranial 
volume) features to generate the brain age model (Supplementary Ma-
terials, Fig. S1). 

2.5. Statistical analysis 

Across the cognitively normal elderly subjects, one-way analysis of 
variance (ANOVA) and χ2 tests were used to compare the demographic 
data among the 3 groups (i.e., high, middle and low-risk groups). One- 
way analyses of covariance (ANCOVAs) were further conducted to ac-
cess the neuropsychological performances and BrainAGE scores, with 
age, education and sex as covariates. In addition, a multivariate linear 
regression analysis was further employed to investigate the effects of 
Alzheimer’s disease Risk factors (i.e., FH and APOE-ε4), sex and edu-
cation on BrainAGE scores. The statistical significance was set at P <
0.05. 

Furthermore, an independent ANCOVA was used to compare the 
BrainAGE scores between the aMCI patients and healthy normal control 
(NC) subjects, with age, education and sex as covariates. The statistical 
significance was set at P < 0.05. In addition, to explore the potential of 
BrainAGE as a pre-screening tool for identifying aMCI patients, we took 
the individual’s BrainAGE scores for all aMCI patients and NC subjects as 
a feature in the discrimination analysis. Further, to achieve superior 
classification performance, a fused classifier that combines the three 
features (i.e., the BrainAGE score, APOE-ε4 and bilateral hippocampus 
GMV) via the sum rule was further used in this study. To test the 
robustness of the results, we also validated the results by using the 
LOOCV validation method. Accuracy, sensitivity, specificity were used 
as quantitative assessments of the generalizability of the classifiers. A 
receiver operating characteristics (ROC) graph was also employed to 
evaluate the performance of the classifier. The area under a ROC curve 
(AUC) is a commonly used quantitative assessment of the diagnostic 
power of a predictive model. 

3. Results 

3.1. Alzheimer’s disease risk factors, sex and education modulate the 
brain aging in cognitively normal elderly individuals 

Cognitively normal elderly individuals were grouped according the 
FH of dementia and APOE allele status (i.e., high risk: both FH and 
APOE-ε4; middle risk: either FH or APOE-ε4; low risk: neither FH nor 
APOE-ε4). As shown in Table 1 and Table S1, no significant differences 
were observed in the demographic information and neuropsychological 
performances among the three groups. 

Evaluated by LOOCV, the pattern of whole-brain GMV could accu-
rately predict the cognitively normal elders’ age at the individual level. 
The correlation between the predicted age and chronological age was r 
= 0.66 (permutation test, P < 0.001) (Fig. 1A). Although no significant 
difference was observed in the BrainAGE scores among the three groups, 
AD risk dose (i.e., the number of AD risk factors) is tend to associated 
with an increased BrainAGE (i.e., high-risk > middle risk > low risk) 
(Table 1, Fig. 1B). Regression analysis was further conducted to inves-
tigate the effects of APOE-ε4, FH of dementia, sex and education on the 
BrainAGE (Table 2). The presence of APOE-ε4 (95% CI − 0.939 to 1.144, 
P = 0.846) and FH of dementia (95% CI − 0.685 to 3.104, P = 0.209) did 
not increase the risk of having increased BrainAGE. However, the 
regression model revealed that female exhibited more advanced brain 
aging (i.e., increased BrainAGE) (95% CI 0.746 to 3.911, B = 2.328, P =

0.004), and that higher education years were associated with preserved 
brain aging (i.e., decreased BrainAGE) (95% CI − 0.810 to − 0.260, B =
− 0.535, P < 0.001) (Fig. 2). 

3.2. Advanced brain aging in aMCI and identification of aMCI using the 
BrainAGE model 

An independent sample including aMCI patients and cognitive 
normal controls was selected from the ADNI dataset. Evaluated by 
LOOCV, the pattern of whole-brain GMV could also accurately predict 
all individual age; the correlation between the predicted age and chro-
nological age was r = 0.38 (permutation test, P < 0.001) (Fig. 3A). And, 
the aMCI patients showed significantly increased BrainAGE scores as 
compared with cognitively normal controls (F = 7.255, P = 0.009), 
implying systematically advanced brain aging (Fig. 3B). Interestingly, 
the BrainAGE scores were negatively corrected with CSF Aβ42 levels in 
the aMCI group (r = − 0.275, P = 0.048) (Fig. 3C). 

In addition, discrimination analyses revealed that the BrainAGE was 
superior to the hippocampus GMV and APOE-ε4 status for identifying 
aMCI patients with an accuracy of 68.9% (BrainAGE: AUC = 0.686; 
APOE-ε4: AUC = 0.573; hippocampus GMV: AUC = 0.414). Further 
exploratory discrimination model combining BrainAGE scores, hippo-
campus GMV and APOE-ε4 indicated that the success rate for detecting 
aMCI patients effectively increased from 68.9% to 75.6% (BrainAGE & 
APOE-ε4 & hippocampus GMV: AUC = 0.752, sensitivity = 86.5%, 
specificity = 60.5%) (Fig. 3D). This result demonstrated that the possi-
bility of utilizing BrainAGE in combination with APOE-ε4 and hippo-
campus GMV as a time-effective and cost-effective pre-screening tool for 

Table 1 
Demographics, neuropsychological performances and brain age gap for all 
participants.   

Low-risk 
(n = 89) 

Middle- 
risk 
(n = 59) 

High-risk 
(n = 17) 

F/χ2 P 
value 

Demographics 
Age (years) 67.1 ± 7.5 66.6 ± 7.2 64.8 ± 5.4  0.690 0.503 

a 

Gender (male/ 
female) 

47/42 29/30 6/11  1.762 0.414b 

Education (years) 12.1 ± 2.9 11.8 ± 3.1 11.7 ± 2.0  0.267 0.766 
a 

General cognition 
MMSE 28.42 ±

1.15 
28.37 ±
1.36 

28.47 ±
1.46  

0.011 0.989c 

MDRS-2 138.03 ±
3.73 

138.41 ±
3.14 

138.59 ±
3.41  

0.292 0.747c 

Composite z scores of each cognitive domain 
Episodic Memory − 0.05 ±

0.68 
0.03 ±
0.72 

0.16 ±
0.62  

0.888 0.413c 

Visuospatial 
Function 

− 0.02 ±
0.81 

0.05 ±
0.61 

− 0.09 ±
0.92  

0.379 0.685c 

Information 
Processing Speed 

− 0.03 ±
0.74 

− 0.06 ±
0.81 

0.37 ±
0.90  

1.954 0.145c 

Executive Function − 0.05 ±
0.56 

0.00 ±
0.68 

0.23 ±
0.69  

1.749 0.177c 

BrainAGE scores 
(years) 

− 0.50 ±
5.52 

0.14 ±
4.87 

1.29 ±
6.82  

0.851 0.429 
a 

Data are presented as the mean ± standard deviation. The level of each cognitive 
domain is denoted by the composite Z scores. Low-risk group demotes the 
subjects who possessed neither family history (FH) of dementia nor APOE-ε4. 
Middle-risk group demotes the subjects who possessed FH of dementia or APOE- 
ε4. High-risk group demotes the subjects who possessed both family history (FH) 
of dementia and APOE-ε4. BrainAGE is defined as the differences between pre-
dicted brain age and chronological age. A negative BrainAGE reflects preserved 
brain health in the face of aging; conversely, a positive BrainAGE reflects dec-
rements in brain health in the face of aging. 

a P values were obtained by one-way analysis of variance (ANOVA). 
b P values were obtained by χ2 test. 
c P values were obtained by one-way analysis of covariance (ANCOVA). 
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identifying individuals with high-risk for AD. 

4. Discussion 

Using data from NADS and ADNI dataset, we have found the rela-
tionship between AD risk factors and brain aging. Though, the study 
showed that three groups’ BrainAGE scores (high risk group, middle risk 
group and low risk group) were lack of statistical difference, we found a 

trend that as the risk factors for AD increase, so did the risk of brain 
aging. Specifically, when analyze the influence of education, gender, FH 
of dementia and APOE-ε4 genotype on brain aging, we observed that 
higher levels of education were correlated with lower brain age and 
female exhibited more advanced brain aging. The following, as a sup-
plement to previous research, we selected aMCI to study the alterations 
of brain age in the early stages of AD. Consistent with our assumption, 
we confirm that patients with aMCI had more advanced brain aging. 
More interestingly, negative correlation between BrainAGE scores and 
CSF Aβ42 levels in the aMCI group was observed. Finally, it’s worth 
noting that we combined BrainAGE with APOE-ε4 and hippocampus 
GMV, and put forward an optimal predictor markers of early screening 
for AD. 

The brain goes through a continuous process from development to 
aging throughout life. However, some pathogenic factors or neurode-
generative diseases affect the aging process of the brain. During the 
natural course of AD, the brain is exposed to aging as well as disease 
effects. BrainAGE scores can not only represent age-related brain 
degeneration, but also show accelerated biological aging and early signs 
of cognitive decline from childhood [16]. Extending the subjects to 
cognitively normal people, we observed that AD risk factors can affect 
brain aging, which means AD may accelerate brain structure and func-
tion’s changes during aging. Higher the risk factors for AD in normal 
people, the faster the brain shrinks. In previous studies, several risk 
factors for AD, such as type 2 diabetes mellitus [18], obesity and dys-
lipidemia [19], have been associated with advance brain aging. A large 
number of neurons die in patients with AD, which in turn aggravates 
brain atrophy, may be one of the mechanisms. Further exploring, with 
the increase of years of education, the score of BrainAGE tend to 
decrease and the change was statistically significant, concluding that the 
high cognitive reserve make the brain structure ‘younger’ in normal 
participants. Similarly, previous studies have found that higher levels of 
education are associated with a lower risk of dementia [20]. Acquiring a 
large amount of information during learning may be related to the 
pattern of changes in specific structural GM in specific brain regions 
[21]. People who practice meditation or make music for a long time 
have lower scores for brain age differences [22,23]. Anja et al. [24] 
proved that higher cognitive reserve scores are associated with better 
cognitive performance. The functional conclusion above is consist with 
our results from the perspective of structure. However, the mechanism 
by which reserves mediate the relationship between pathology and 
cognitive function is through a delay in symptom onset rather than a 
reduction in the rate of cognitive decline. Once MCI occurred, the higher 
the cognitive reserve score, the faster the cognitive decline [24]. 

Fig. 1. (A) Age predicted according to T1-weighted image compared with actual age of each subjects in normal cognitively population. Diagonal line (i.e., blue line) 
indicates where the chronological age is equal to the predicted age. (B) Shown are box plots for BrainAGE scores of low-risk group, middle-risk group and high-risk 
group. The data were expressed as the mean (M) ± standard error (SE). 

Table 2 
Effects of APOE genotype, FH of dementia, gender and education on the Brain-
AGE with the linear regression analysis.  

Predictors Regression coefficients (95% CI) P value 

FH of dementia 1.210 (− 0.685 to 3.104)  0.209 
APOE-ε4 0.102 (− 0.939 to 1.144)  0.846 
Female 2.328 (0.746 to 3.911)  0.004 
Education − 0.535 (− 0.810 to − 0.260)  < 0.001 

Abbreviations: APOE, apolipoprotain E; CI, confidence interval; BrainAGE, Brain 
age gap estimation; FH, family history. 

Fig. 2. Association between BrainAGE scores and education years. The 
regression model revealed that higher education years were associated with 
preserved brain aging (i.e., decreased BrainAGE) (95% CI − 0.810 to − 0.260, B 
= − 0.535, P < 0.001). 

M. Wang et al.                                                                                                                                                                                                                                  



Neuroscience Letters 771 (2022) 136398

5

Sex differences play a vital role in human brain structure and phys-
iology. Eileen Luders et al. found female brains at age 50 were estimated 
more than three years younger than male brains [25]. This is contrary to 
our findings. In the current cross-sectional study, we demonstrated that 
women had a statistically significant higher BrainAGE scores than men. 
It’s worth noting that the women in the two studies were in different 
ages. Woman’s brain morphology varies during the course of the men-
strual cycle and BrainAGE is modulated by hormone levels [26]. Estro-
gen has a neuroprotective effect on age-related brain atrophy [27]. 
However, the women in our study were almost postmenopausal, whose 
brain volume has declined over the long term [28]. This also explain 
why brain aging is sex-specific. These results suggest that post-
menopausal women may be at high risk for AD. In terms of metabolic 
brain age, women exhibit a significant “youth” advantage in adulthood, 
but this advantage disappears after cognitive impairment [29]. Apart 
from hormonal reasons, another possible mechanisms may be correlated 
with sex-specific associations between lifestyle-related health measures 
and gray matter atrophy [30]. Another multi-center study of 228 
cognitively unimpaired elderly subjects demonstrated that some physi-
ological and clinical parameters, such as markers of liver and kidney 
functions, that influence structural brain aging show a sex-specific 
pattern [31]. However, the mechanism of gender-specific needs to be 
further studied. 

AD is a multifactorial disease with genetic (70%) and environmental 

(30%) causes. It is well known that the APOE-ε4 allele is an established 
risk factor for AD [32]. Compared with non-carriers, carriers of APOE-ε4 
are approximately 8 to 15 times more likely to develop AD. APOE-ε4 
also affects the clinical course of AD, leading to early onset of dementia, 
high degree of brain atrophy, and rapid cognitive decline [33]. The 
presence of the ε4 allele is associated with an earlier onset of terminal 
cognitive decline and a faster rate of cognitive decline before and after 
onset [34,35]. In the present research, BrainAGE scores did not differ 
between APOE-ε4 carriers and non-carriers in CN subjects. This is in line 
with Luise Christine Löwe’s results suggesting that BrainAGE scores had 
no significant differences between ε4 carriers and non-carriers in MCI as 
well as AD patients from ADNI dataset [36]. Similar results were 
observed in patients with mild traumatic injury using brain morphom-
etry and diffusion tensor imaging [37]. However, looking longitudi-
nally, the brain ages faster in APOE-ε4 carriers than in non-carriers in 
progressive MCI (pMCI) and AD patients [36]. In normal control group 
and stable MCI (sMCI), the effect of APOE-ε4 on brain aging was 
significantly lower, indicating that the influence of allele on brain aging 
rates depends on the type of AD. One reason is that the closer to the late 
or end stages of AD, the influence of ε4 allele on the speed of brain aging 
is more obvious. Moreover, measurements used in this study may be not 
sensitive enough and that other objective markers of biological aging 
could provide additional information, such as Telomere length and 
epigenetic clock. Therefore, we cannot conclude that APOE-ε4 have no 

Fig. 3. (A) Age predicted according to T1-weighted image compared with actual age of each subject with aMCI. Diagonal line (i.e., blue line) indicates where the 
chronological age is equal to the predicted age. (B) Shown are box plots for BrainAGE scores of two groups (P = 0.009). The data were expressed as the mean (M) ±
standard error (SE). (C) The line represents a negative correlations between BrainAGE scores and CSFAβ42. (D) ROC curves for classifying aMCI subject and 
NC subjects. 
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effect on brain aging in cognitively normal people, which may already 
influence the aging rates subtly. FH and APOE4 highly co-occur and, 
conceivably, their effects on developing AD dementia may overlap [38]. 
Furthermore, APOE4 and FH have synergistic interaction effects on ce-
rebral Aβ deposition and glucose metabolism in cognitive normal 
middle-aged and older adults [39]. A first-degree FH of dementia is a 
well-documented risk factor for AD; however, the influence of FH on 
brain aging across the lifespan is poorly understood. FH of AD affects 
mitochondrial function by modulating translocase of outer mitochon-
drial membrane, leading memory decline [40]. Whether or not there’s a 
family history, no significant group differences in behavioral perfor-
mance and hippocampal volume were found from the studies by M.N. 
Rajah et al. [41]. Similarly, we also failed to observe the effect of FH on 
brain age. This may be due to our small sample size, or we need to select 
more different stages of AD for analysis. Even so, healthy people with 
both FH and APOE4 need more attention for AD prevention. Future ef-
forts will seek to design larger-scale neuroimaging studies and integrate 
the neuroimaging findings with deep genetic. 

Katja et al. found that the mean BrainAGE score for the AD patients 
was +10 years, implying systematically advanced brain aging [10]. 
Consistent with the hypothesis that pathological atrophy of AD is an 
accelerated aging process [42], as a supplement to previous researches, 
we found a significant difference in the BrainAGE scores between aMCI 
patients and CN controls. Different types of AD follow different trajec-
tories of brain aging. The brains of people with AD age at a faster rate 
than those with pMCI [43]. From the perspective of cognitive decline, 
different regional atrophy patterns are associated with different cogni-
tive impairment profiles. Advanced brain aging in normal people were 
associated with lower executive function. Decrease of CSF Aβ42 levels is 
an important marker for early diagnosis of AD, which directly reflects 
the deposition of brain amyloid protein [44]. It is interesting to note a 
negative correlation between BrainAGE scores and CSF Aβ42 levels. 
Although aging itself appears to be associated with synaptic and nerve 
loss in the absence of proteinopathy [45], abnormal protein deposition 
in the brain of AD patients increases with age and further leads to 
neuronal damage and loss, accelerating brain aging. This finding further 
provides additional evidence for the link between AD and brain aging. 
Early identification of brain anatomy that differs from normal growth 
and atrophy patterns coupled with early intervention has important 
implications for improving clinical outcomes, for example in AD. In fact, 
hippocampal volume, whole brain volume and apparent “brain volume” 
are all potential biomarkers for AD [46]. In a study by Gaser et al., 
BrainAGE scores were used to predict the transition from MCI to AD 
which was more accurate than the conversion prediction based on 
hippocampal volume, cognitive score, and CSF biomarkers [15]. That is 
consistent with our findings. This study provides evidence that BrainAGE 
scores was better than hippocampal GMV and APOE-ε4 in differentiating 
patients with aMCI. When combining BrainAGE with cerebrospinal fluid 
biomarkers and hippocampal volume, the sensitivity and specificity 
were highest, expected to be the best pre-screening tool. 

Our study is not without limitations. First, white matter damage due 
to cerebrovascular disease was not detected in the segmentation 
method. In future, the segmentation should be extended by methods in 
combination with FLAIR sequence. Besides, subjects with high BrainAGE 
scores but without cognitive impairment may have other preclinical 
neurodegenerative diseases. However, because such situation only oc-
curs in a limited number of subjects that unlikely contribute to the dif-
ference in outcome. Thirdly, we were unable to observe a relationship 
between cognitive reserve and the rate of brain aging. Further studies 
should longitudinal investigate the relationship. Forth, in this present 
study, whole-brain raw GMVs were used to generate the brain age 
model, and we found that females exhibited more advanced brain aging 
(i.e., increased BrainAGE) than the males. However, with using the 
whole-brain normalized GMV (i.e., raw regional/total intra-cranial 
volume) features to generate the brain age model, we observed no sig-
nificant gender difference in the BrainAGE. Further studies with larger 

independent sample were needed to validate the gender-effect on brain 
aging. The last, providing information on the differences in brain age 
analysis between different brain regions is of great value, in the years to 
come. 

5. Conclusions 

AD is a process of the brain pathological aging. Enhancing cognitive 
reserve may be one way to delay brain aging. BrainAGE has shown 
promising results in providing early signs of pathological brain aging 
before clinical symptoms of AD and even predicting future AD. Since this 
method requires only a single T1-weighted image of each individual, it 
can be easily implemented in clinical work to act as a pre-screening tool 
for identifying AD. In addition, research on the relationship between 
brain age and AD may help to develop personalized neuroprotective 
treatments and interventions. 
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